S. I. Fedynyak, M. M. Sheremeta

CONVERGENCE OF A FORMAL POWER SERIES AND GELFOND-LEONT'EV DERIVATIVES

S. I. Fedynyak, M. M. Sheremeta. Convergence of a formal power series and Gelfond-Leont'ev

 derivatives, Mat. Stud. 35 (2011), 149-154.Given a formal power series, we establish conditions on the Gelfond-Leont'ev derivatives under which the series represents a function analytic in the disk $\{z:|z|<R\}, R \in(0,+\infty]$. We also give a survey of well-know results for the case $R=+\infty$.
С. И. Федыняк, М. Н. Шеремета. Сходимость формального степенного ряда и производные Гельфонда-Леонтьева // Мат. Студії. - 2011. - Т.35, №2. - С.149-154.

Получены условия на производные Гельфонда-Леонтьева формального степенного ряда, обеспечивающие аналитичность в круге $\{z:|z|<R\}, R \in(0,+\infty]$ его суммы. Приведен обзор ранее известных результатов для случая $R=+\infty$.

1. For $R \in[0,+\infty]$ we denote by $A(R)$ the class of power series

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} f_{k} z^{k} \tag{1}
\end{equation*}
$$

having a radius of convergence $\geq R$, and we say that $f \in A^{+}(R)$ if $f \in A(R)$ and $f_{k}>0$ for all $k \geq 0$. For $f \in A(0)$ and $l(z)=\sum_{k=0}^{\infty} l_{k} z^{k} \in A^{+}(0)$ the formal power series

$$
\begin{equation*}
D_{l}^{n} f(z)=\sum_{k=0}^{+\infty} \frac{l_{k}}{l_{k+n}} f_{k+n} z^{k} \tag{2}
\end{equation*}
$$

is called [1-2] the Gelfond-Leont'ev derivative of order n. If $l(z)=e^{z}$, that is $l_{k}=1 / k$!, then $D_{l}^{n} f(z)=f^{(n)}(z)$ is a usual derivative of order n. We may assume that $l_{0}=1$.

As in [2], let Λ be the class of all positive sequences $\lambda=\left(\lambda_{k}\right)$ with $\lambda_{1} \geq 1$, and let $\Lambda^{*}=\left\{\lambda \in \Lambda: \ln \lambda_{k} \leq a k\right.$ for every $k \in \mathbb{N}$ and some $\left.a \in[0,+\infty)\right\}$. We say that $f \in A_{\lambda}(0)$ if $f \in A(0)$ and $\left|f_{k}\right| \leq \lambda_{k}\left|f_{1}\right|$ for all $k \geq 1$. Finally, let N be a class of increasing sequences $\left(n_{p}\right)$ of nonnegative integers, $n_{0}=0$.

In the next two subsections we give some known results which preceded the main results.
2. Investigation of conditions on Gelfond-Leont'ev derivatives, under which series (1) represents an entire function, started in [2]. In particular, the following theorem is proved.
Theorem 1 ([2]). Let $l \in A^{+}(0)$. Then for every $f \in A(0)$ and $\lambda \in \Lambda$ the condition $\left(\forall n \in \mathbb{Z}_{+}\right)\left\{D_{l}^{n} f \in A_{\lambda}(0)\right\}$ implies the inclusion $f \in A(+\infty)$ if and only if $l \in A^{+}(+\infty)$, i. e.

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \sqrt[k]{l_{k}}=0 \tag{3}
\end{equation*}
$$

2010 Mathematics Subject Classification: 30D50, 30D99.

Denote by N the class of a sequence $\left(n_{p}\right)$ such that $n_{p} \in \mathbb{N}, n_{p}<n_{p+1}(p \geq 1)$.
Assuming that $l \in A^{+}(+\infty)$ the second author investigated ([2]) conditions on $\left(n_{p}\right) \in N$ that provide the implication

$$
\begin{equation*}
\left(\forall p \in \mathbb{Z}_{+}\right)\left\{D_{l}^{p} f \in A_{\lambda}(0)\right\} \Rightarrow f \in A(+\infty) \tag{4}
\end{equation*}
$$

Theorem 2 ([2]). Let $\left(n_{p}\right) \in N$. Then for every $\lambda \in \Lambda, f \in A(0)$ and $l \in A^{+}(+\infty)$ condition (4) holds if and only if

$$
\begin{equation*}
\varlimsup_{p \rightarrow+\infty}\left(n_{p+1}-n_{p}\right)<\infty \tag{5}
\end{equation*}
$$

We put $\varkappa_{k}=l_{k} l_{k+1} / l_{k}^{2}$ and we say that $l \in A_{*}^{+}(R)$ if $l \in A^{+}(R)$ and the sequence $\left(\varkappa_{k}\right)$ is nondecreasing. In the following theorem the sequence $\left(n_{p+1}-n_{p}\right)$ can be unbounded, but we require that $\lambda \in \Lambda^{*}$ and $l \in A_{*}^{+}(+\infty)$.

Theorem 3 ([2]). Let $\left(n_{p}\right) \in N$ and $l \in A_{*}^{+}(+\infty)$. Then for every $\lambda \in \Lambda^{*}$ and $f \in A(0)$ condition (4) holds if and only if

$$
\begin{equation*}
\lim _{p \rightarrow+\infty} \frac{1}{n_{p}+1}\left\{\ln \frac{1}{l_{n_{p}+1}}-\sum_{j=1}^{p} \ln \frac{1}{l_{n_{j}-n_{j-1}+1}}\right\}=+\infty \tag{6}
\end{equation*}
$$

The condition $l \in A_{*}^{+}(+\infty)$ (i. e. the nondecrease of the sequence $\left(\varkappa_{k}\right)$) in Theorem 3 cannot be removed in general. Actually, in [2] it is shown, that there exist sequences $\left(n_{p}\right)$, $\lambda \in \Lambda^{*}$ and functions $l \in A^{+}(+\infty)$ and $f \notin A(+\infty)$ such that the sequence $\left(\varkappa_{k}\right)$ is oscillating, condition (6) does not hold and $\left(\forall p \in \mathbb{Z}_{+}\right)\left\{D_{l}^{n_{p}} f \in A_{\lambda}(0)\right\}$.

The following problem is examined in [2]: for what functions $l \in A_{*}^{+}(+\infty)$ one has that, if $\left(\forall p \in \mathbb{Z}_{+}\right)\left\{D_{l}^{n_{p}} f \in A_{\lambda}(0)\right\}$ holds for every $\left(n_{p}\right)$ and $\lambda \in \Lambda^{*}$ then $f \in A(+\infty)$? If we denote $\omega_{k}=\frac{1}{k+1} \ln \frac{1}{l_{k+1}}-\frac{1}{k} \ln \frac{1}{l_{k}}$ then [2] the nondecrease of the sequence $\left(\varkappa_{k}\right)$ implies the positivity and the nonincrease of the sequence $\left(\omega_{k}\right)$, that is, $\lim _{k \rightarrow \infty} \omega_{k}=\omega$ exists.

Theorem 4 ([2]). Let $l \in A_{*}^{+}(+\infty)$. Then for every $\left(n_{p}\right) \in N, \lambda \in \Lambda^{*}$ and $f \in A(0)$ condition (4) holds if and only if $\omega>0$.

The following theorem asserts that, under some conditions on $l \in A^{+}(+\infty)$, one value $n \in \mathbb{N}$ suffices in order that the condition $D_{l}^{n_{p}} f \in A_{\lambda}(0)$ implies the inclusion $f \in A(+\infty)$.

Theorem 5 ([2]). Let $l \in A^{+}(+\infty)$. Then for every $n \in \mathbb{N}, \lambda \in \Lambda^{*}$ and $f \in A(0)$ the condition $D_{l}^{n} f \in A_{\lambda}(0)$ implies the inclusion $f \in A(+\infty)$, if and only if

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sqrt[k]{l_{k} / l_{k+1}}=+\infty \tag{7}
\end{equation*}
$$

We note that condition (7) holds provided $\omega_{k} \rightarrow+\infty(k \rightarrow \infty)$. For the sequence $l_{k}=\exp \left\{-\omega k^{2}\right\}$ with $\omega>0$ we have $\omega_{k} \searrow \omega(k \rightarrow \infty)$, and condition (7) holds if $l_{k}=$ $\exp \left\{-\beta(k) k^{2}\right\}$, where $0<\beta(x) \nearrow+\infty(k \rightarrow \infty)$.

It is shown in [3] that if $l \in A^{+}(+\infty)$ and the sequence $\left(\varkappa_{k}\right)$ is nonincreasing then $1>\varkappa_{k} \searrow \varkappa \geq 0\left(k_{0} \leq k \rightarrow+\infty\right)$ and $\omega_{k} \nearrow \omega=\frac{-\ln \varkappa}{2} \leq+\infty(k \rightarrow+\infty)$. Therefore, if $1>\varkappa_{k} \searrow \varkappa \geq 0\left(k_{0} \leq k \rightarrow+\infty\right)$ then by Theorem 5, for every $n \in \mathbb{N}, \lambda \in \Lambda^{*}$ and $f \in A(0)$ the condition $D_{l}^{n} f \in A_{\lambda}(0)$ implies the inclusion $f \in A(+\infty)$. However, the following result is more general.

Theorem 6 ([3]). Let $l \in A^{+}(+\infty)$ and $1>\varkappa_{k} \searrow \varkappa \geq 0\left(k_{0} \leq k \rightarrow+\infty\right)$. Then for every $\left(n_{p}\right) \in N, \lambda \in \Lambda^{*}$ and $f \in A(0)$ condition (4) holds.

In Theorems 3-6 $\lambda \in \Lambda^{*}$, i. e. the sequence λ can increase not faster than the exponential function. In [4] an analogue of Theorem 3 is obtained for the case if λ is allowed to increase considerable fast. We assume that a positive sequence $\psi=\left(\psi_{k}\right)$ satisfies the condition $\psi_{k}^{2} \leq \psi_{k-1} \psi_{k+1}, k \geq 2$, and let $\Lambda_{\psi}=\left\{\lambda: \ln \lambda_{k} \leq \ln \psi_{k}+a k(k \in \mathbb{N}\}, a \equiv\right.$ const.

Theorem 7 ([4]). Let $\left(n_{p}\right) \in N, l \in A_{*}^{+}(+\infty)$ and $\psi_{k}^{2} \leq \psi_{k-1} \psi_{k+1}, k \geq 2$. Then for every $\lambda \in \Lambda_{\psi}$ and $f \in A(0)$ condition (4) holds if and only if

$$
\begin{equation*}
\lim _{p \rightarrow+\infty} \frac{1}{n_{p}+1}\left\{\ln \frac{1}{l_{n_{p}+1}}-\sum_{j=1}^{p} \ln \frac{\psi_{n_{j}-n_{j-1}+1}}{l_{n_{j}-n_{j-1}+1}}\right\}=+\infty \tag{8}
\end{equation*}
$$

We remak that the condition $\psi_{k}^{2} \leq \psi_{k-1} \psi_{k+1}, k \geq 2$ holds if, for example, $\psi_{k}=k$! or $\psi_{k}=\exp \left\{\alpha k^{n}\right\}(\alpha>0, n \in \mathbb{N})$, and Theorem 7 has the following consequence.

Corollary 1 ([4]). Let $l_{k}=\exp \left\{-\omega_{1} k^{2}\right\}$ and $\psi_{k}=\exp \left\{-\omega_{2} k^{2}\right\}, 0<\omega_{1}, \omega_{2}<\infty$. Then for every $\left(n_{p}\right) \in N, \lambda \in \Lambda_{\psi}$ and $f \in A(0)$ condition (4) holds.
3. In all mentioned results conditions on the Gelfond-Leont'ev derivatives of formal power series (1) implies that the convergence radius $R[f]=+\infty$. The following question naturally arises: find conditions on the Gelfond-Leont'ev derivatives, under which series (1) is convergent in some neighborhoods of the origin, i.e. $R[f]>0$. Such results are obtained in the papers [5-7]. In particular, in [5] it is proved the following proposition, which is new also for the case $R[f]=+\infty$.

Proposition 1 ([5]). Let $R \in(0,+\infty]$. Then $f \in A(R)$ if and only if there exists a sequence $\lambda \in \Lambda$ such that $f \in A_{\lambda}(0)$ and $\varlimsup_{k \rightarrow \infty} \sqrt[k]{\lambda_{k}} \leq 1 / R$.

The following result generalizes Theorem 1.
Theorem 8 ([5]). Let $l \in A^{+}(0)$. Then for every $f \in A(0)$ and $\lambda \in \Lambda$ the condition $\left(\forall n \in \mathbb{Z}_{+}\right)\left\{D_{l}^{n} f \in A_{\lambda}(0)\right\}$ implies the inclusion $f \in A(R)$ if and only if

$$
\begin{equation*}
\varlimsup_{k \rightarrow+\infty} \sqrt[k]{l_{k}} \leq \frac{l_{2}}{l_{1} \lambda_{2} R} \tag{9}
\end{equation*}
$$

Obviously, for $R=+\infty$ conditions (3) and (9) are equivalent. We remark also that Theorem 8 implies that if $l \in A^{+}(0)$ then in order that for every $f \in A(0)$ and $\lambda \in \Lambda$ the condition $\left(\forall n \in \mathbb{Z}_{+}\right)\left\{D_{l}^{n} f \in A_{\lambda}(0)\right\}$ imply the analyticity of f in some neighborhood of the origin, it is necessary and sufficient that $\sqrt[k]{l_{k}}=O(1), k \rightarrow \infty$.

The following two results are analogues of Theorem 2.
Theorem 9 ([6]). Let $\left(n_{p}\right) \in N$. In order that for every $\lambda \in \Lambda, f \in A(0)$ and $l \in A^{+}(R)$ $(0<R \leq+\infty)$ the condition $\left(\forall p \in \mathbb{Z}_{+}\right)\left\{D_{l}^{n_{p}} f \in A_{\lambda}(0)\right\}$ imply the analyticity of f in some neighborhood of the origin is necessary and sufficient that condition (5) hold.

Theorem 10 ([6]). Let $\left(n_{p}\right) \in N$. For condition (5) to hold is necessary and sufficient that for every $\lambda \in \Lambda, f \in A(0)$ and $l \in A^{+}(R)(0<R \leq+\infty)$ the condition $\left(\forall p \in \mathbb{Z}_{+}\right)\left\{D_{l}^{n_{p}} f \in\right.$ $\left.A_{\lambda}(0)\right\}$ imply the estimate $R[f] \geq P R[l]$, where $R[f]$ and $R[l]$ are the convergence radii of the functions f and l, and P is a positive constant.

We note that $P=\frac{1}{l_{1} \max \left\{\lambda_{k} / l_{k}: 2 \leq k \leq m+1\right\}}$, where $m=\max \left\{n_{p+1}-n_{p}: p \geq 0\right\}$, and the estimate $R[f] \geq P R[l]$ in Theorem 10 is sharp. Also if $\varlimsup_{p \rightarrow+\infty}\left(n_{p+1}-n_{p}\right)=\infty$ then for every $R \in(0,+\infty]$ there exist $\lambda \in \Lambda, f \in A(0)$ and $l \in A^{+}(0)$ such that $\left(\forall p \in \mathbb{Z}_{+}\right)\left\{D_{l}^{n_{p}} f \in A_{\lambda}(0)\right\}$, but $R[f]=0$ and $R[l]=R$.

We denote $\Lambda_{*}=\left\{\lambda \in \Lambda: \lambda_{k-1} \lambda_{k+1} \geq \lambda_{k}^{2}(k \geq 2)\right\}$. Then Theorem 3 has the following analogue.

Theorem 11 ([7]). Let $\left(n_{p}\right) \in N$. Then for every $\lambda \in \Lambda_{*}, l \in A_{*}^{+}(0)$ and $f \in A(0)$ the condition $\left(\forall p \in \mathbb{Z}_{+}\right)\left\{D_{l}^{n_{p}} f \in A_{\lambda}(0)\right\}$ implies the inclusion $f \in A(R)$ if and only if

$$
\begin{equation*}
\underline{\lim }_{p \rightarrow+\infty} \frac{1}{n_{p}+1}\left\{\ln \frac{1}{l_{n_{p}+1}}-p \ln l_{1}-\sum_{j=1}^{p} \ln \frac{\lambda_{n_{j}-n_{j-1}+1}}{l_{n_{j}-n_{j-1}+1}}\right\} \geq \ln R . \tag{10}
\end{equation*}
$$

Each of the conditions $\lambda \in \Lambda_{*}, l \in A_{*}^{+}(0)$ in Theorem 11 cannot be relaxed. Theorem 11 is a consequence of the following result.

Theorem $12([7])$. Let $\left(n_{p}\right) \in N$, and let a sequence $\lambda \in \Lambda$ and a function $l \in A^{+}(0)$ be such that for all $p \in \mathbb{Z}_{+}$and $k=2, \ldots, n_{p+1}-n_{p}$

$$
\ln \frac{l_{n_{p}+k-1} l_{n_{p}+k+1}}{l_{n_{p}+k}^{2}}-\ln \frac{l_{k-1} l_{k+1}}{l_{k}^{2}}+\ln \frac{\lambda_{k-1} \lambda_{k+1}}{\lambda_{k}^{2}} \geq 0
$$

If $\left(\forall p \in \mathbb{Z}_{+}\right)\left\{D_{l}^{n_{p}} f \in A_{\lambda}(0)\right\}$ then the estimate

$$
\ln R[f] \geq \lim _{p \rightarrow+\infty} \frac{1}{n_{p}+1}\left\{\ln \frac{1}{l_{n_{p}+1}}-p \ln l_{1}-\sum_{j=1}^{p} \ln \frac{\lambda_{n_{j}-n_{j-1}+1}}{l_{n_{j}-n_{j-1}+1}}\right\}
$$

is true and sharp.
We remark that one can obtain an analogue of Theorem 12 for the case when the sequence $\lambda \in \Lambda$ satisfies a condition similar to $\lambda \in \Lambda^{*}$.

Theorem 13 ([7]). Let $\left(n_{p}\right) \in N, l \in A_{*}^{+}(0)$ and let a sequence $\lambda \in \Lambda$ be such that $\ln \lambda_{k} \leq a(k-1)$ for all $k \geq 1$ and some $a>0$. If $\left(\forall p \in \mathbb{Z}_{+}\right)\left\{D_{l}^{n_{p}} f \in A_{\lambda}(0)\right\}$ then the estimate

$$
\begin{equation*}
\ln R[f] \geq \underline{\lim }_{p \rightarrow+\infty} \frac{1}{n_{p}+1}\left\{\ln \frac{1}{l_{n_{p}+1}}-p \ln l_{1}-\sum_{j=1}^{p} \ln \frac{1}{l_{n_{j}-n_{j-1}+1}}\right\}-a \tag{11}
\end{equation*}
$$

is true and sharp.
In Theorem 13 one cannot replace the condition $\ln \lambda_{k} \leq a(k-1)$ with the condition $\lambda \in \Lambda^{*}$ and, moreover, with the condition $\varlimsup_{k \rightarrow \infty}\left(\ln \lambda_{k}\right) / k=a$. However, the following theorem is true.

Theorem $14([7])$. Let $\left(n_{p}\right) \in N, \ln \lambda_{k}=o(k)(k \rightarrow \infty)$ and let a function $l \in A^{+}(0)$ be such that the sequence ($\mu_{k-1} \mu_{k+1} / \mu_{k}^{2}$) is nondecreasing, where $\mu_{k}=l_{k} / \lambda_{k}$. If $\left(\forall p \in \mathbb{Z}_{+}\right)\left\{D_{l}^{n_{p}} f \in\right.$ $\left.A_{\lambda}(0)\right\}$ then the estimate (11) with $a=0$ is true and sharp.
4. Continuing investigations from [5-7], we show, at first, that the full analogue of Theorem 5 is valid.

Theorem 15. Let $l \in A^{+}(0)$. Then for every $n \in \mathbb{N}, \lambda \in \Lambda^{*}$ and $f \in A(0)$ the condition $D_{l}^{n} f \in A_{\lambda}(0)$ implies the inequality $R[f]>0$ if and only if

$$
\begin{equation*}
\varliminf_{k \rightarrow \infty} \sqrt[k]{l_{k} / l_{k+1}}>0 \tag{12}
\end{equation*}
$$

Proof. We first assume that $\left(l_{k}\right)$ satisfies condition (12) and $D_{f}^{n} \in A_{\lambda}(0)$ for some fixed number $n \in \mathbb{N}$. Then $\frac{l_{k}\left|f_{n+k}\right|}{l_{n+k}} \leq \lambda_{k} \frac{l_{1}\left|f_{n+1}\right|}{l_{n+1}}(k \geq 1)$, that is,

$$
\frac{1}{n+k} \ln \frac{1}{\left|f_{n+k}\right|} \geq \frac{1}{n+k} \ln \frac{l_{k}}{l_{n+k}}-\frac{\ln \lambda_{k}}{n+k}-\frac{1}{n+k} \ln \left(\frac{l_{1}\left|f_{n+1}\right|}{f_{n+1}}\right)
$$

and, thus,

$$
\begin{equation*}
\ln R[f]=\varliminf_{k \rightarrow \infty} \frac{1}{n+k} \ln \frac{1}{\left|f_{n+k}\right|} \geq \varliminf_{k \rightarrow \infty} \frac{1}{n+k} \ln \frac{l_{k}}{l_{n+k}}-a . \tag{13}
\end{equation*}
$$

But by condition (12), there exists $c>0$ such that $\sqrt[k]{l_{k} / l_{k+1}} \geq c$ for all $k \geq 1$. Therefore, we obtain from (13)

$$
\begin{aligned}
\ln R[f] & \geq \varliminf_{k \rightarrow \infty} \frac{1}{n+k} \sum_{j=k}^{n+k-1} \ln \frac{l_{j}}{l_{j+1}}-a \geq \varliminf_{k \rightarrow \infty} \frac{1}{n+k} \sum_{j=k}^{n+k-1} j \ln c-a= \\
& =\varliminf_{k \rightarrow \infty} \frac{\ln c}{n+k} \frac{2 n k+n(n-1)}{2}-a=n \ln c-a>-\infty,
\end{aligned}
$$

that is, $R[f]>0$ and the sufficiency of (12) is proved.
Now we assume that condition (12) does not hold, i.e. there exists an increasing sequence $\left(k_{j}\right)$ such that $\sqrt[k_{j}]{l_{k_{j}} / l_{k_{j}+1}}=\alpha_{j} \rightarrow 0(j \rightarrow \infty)$. We put $k_{0}=0, f_{k_{j}+1}=\frac{l_{k_{j}+1}}{f_{k_{j}}}(j \geq 0)$ and $f_{k}=0$ for $k \neq k_{j}+1$. For series (1) with such coefficients we have $\sqrt[k_{j}]{f_{k_{j}+1}}=\sqrt[k_{j}]{l_{k_{j}+1} / l_{k_{j}}}=$ $\left(1 / \alpha_{j}\right)^{k_{j} /\left(k_{j}+1\right)} \rightarrow+\infty(j \rightarrow \infty)$, that is, $R[f]=0$.

On the other hand, for the series we have

$$
D_{f}^{1}(z)=\sum_{j=0}^{\infty} \frac{l_{k_{j}}}{l_{k_{j}+1}} l_{k_{j}+1} z^{k_{j}+1}=z+\sum_{j=1}^{\infty} z^{k_{j}+1}
$$

that is, $D_{f}^{1} \in A_{\lambda}(0)$, if we choose $\lambda_{k} \equiv 1$. Thus, if condition (12) does not hold then there exist $n=1, \lambda \in \Lambda^{*}$ and a formal power series (1) such that $D_{f}^{n} \in A_{\lambda}(0)$, but $R[f]=0$. Theorem 15 is proved.

If we denote $c=\varliminf_{k \rightarrow \infty} \sqrt[k]{l_{k} / l_{k+1}}$ then one can show using arguments analogous to that in the proof of Theorem 15 that the estimate $\ln R[f] \geq n \ln c-a$ is valid. On the other hand, if we choose $l_{k}=c^{k(k+1)}(k \geq 0), \lambda_{k}=e^{a(k-1)}(k \geq 1), f_{0}=\cdots=f_{n}=0, f_{n+1}=1$ and $f_{n+k}=f_{n+1} \lambda_{k} l_{n+k} / l_{k}(k \geq 1)$ then for series (1) with such coefficients we have $D_{l}^{n} f(z)=$ $\sum_{k=0}^{\infty} \lambda_{k} z^{k}$ (i.e. $\left.D_{l}^{n} f \in A_{\lambda}(0)\right)$ and $\ln R[f]=\lim _{k \rightarrow \infty} \frac{1}{n+k}\left(\ln \frac{l_{k}}{l_{n+k}}-a(k-1)\right)=n \ln c-a$. Thus, the following proposition is true.

Proposition 2. Let $n \in \mathbb{N}, \lambda \in \Lambda^{*}, l \in A^{+}(0)$ and $\underset{k \rightarrow \infty}{\varliminf_{k}} \sqrt[k]{l_{k} / l_{k+1}}=c$. If $D_{l}^{n} f \in A_{\lambda}(0)$ then the estimate $R[f] \geq c^{n} e^{-a}$ is valid and sharp.

As above, we denote $\varkappa_{k}=\frac{l_{k-1} l_{k+1}}{l_{k}^{2}}$ and $\omega_{k}=\frac{1}{k+1} \ln \frac{1}{l_{k+1}}-\frac{1}{k} \ln \frac{1}{l_{k}}$. It is easy to show [2-3] that $\omega_{k}=\frac{1}{k(k+1)} \sum_{j=1}^{k} j \ln \frac{1}{\varkappa_{j}}$. Hence, if $\lim _{k \rightarrow \infty} \varkappa_{k}=\varkappa$ then $\lim _{k \rightarrow \infty} \omega_{k}=\omega=\frac{1}{2} \ln \frac{1}{\varkappa}$. On the other hand,

$$
\begin{gathered}
\ln c=\varliminf_{k \rightarrow \infty}\left(\frac{1}{k} \ln \frac{1}{l_{k+1}}-\frac{1}{k} \ln \frac{1}{l_{k}}\right)=\varliminf_{k \rightarrow \infty}\left(\omega_{k}+\frac{1}{k(k+1)} \ln \frac{1}{l_{k+1}}\right)= \\
=\varliminf_{k \rightarrow \infty}\left(\omega_{k}+\frac{1}{k} \sum_{j=1}^{k} \omega_{j}\right)=2 \omega=\ln \frac{1}{\varkappa}
\end{gathered}
$$

Therefore, Proposition 2 and arguments of its proof yield the following result.
Theorem 16. Let $n \in \mathbb{N}, \lambda \in \Lambda^{*}, l \in A^{+}(0)$ and $\lim _{k \rightarrow \infty} \varkappa_{k}=\varkappa$. If $D_{l}^{n} f \in A_{\lambda}(0)$ then the estimate $R[f] \geq e^{2 n \omega} e^{-a}=\varkappa^{-n} e^{-a}$ is valid and sharp.

Theorem 16 has the following corollary.
Corollary 2. Let $\left(n_{p}\right) \in N, \lambda \in \Lambda^{*}, l \in A^{+}(0)$ and $\lim _{k \rightarrow \infty} \varkappa_{k}=\varkappa<1$ (i. e. $\omega>0$). If $D_{l}^{n_{p}} f \in A_{\lambda}(0)$ for all $p \in \mathbb{Z}_{+}$then $R[f]=+\infty$.

Since $\varkappa<1$ implies $l \in A^{+}(+\infty)$, from Corollary 2 and, thus, from Theorem 16 we obtain Theorem 6 and the sufficiency of the condition $\omega>0$ in Theorem 4.

REFERENCES

1. Гельфонд А.О., Леонтьев А.Ф. Об одном обобщении ряда Фуръе// Матем. сб. - 1957. - Т.29, №3. C. $477-500$.
2. Шеремета М.Н. О степенных рядах с удовлетворяюшими специалвному условию производными Гельфонда-Леонтъева// Мат. физика, анализ, геометрия. - 1996. - Т.3, №3/4. - С. 423-445.
3. Sheremeta M.M. On analytic continuation of power series with the condition on their Gelfond-Leont'ev derivatives// Proc. Conf. held in Paseky nad Jezerou. - 1996. - P. 201-205.
4. Sheremeta M.M. On analytic continuation of functions with the condition on their Gelfond-Leont'ev derivatives// Bull. Soc. Sci. of Lettr. Lodz. - 1997. - V.47. - Ser.: Recher. sur le devorm. - V.24. P. 83-90.
5. Волох О.А., Фединяк С.І. Про формальні степеневі ряди, похідні Гельфонда-Леонтъєва яких задовольняють спеціальну умову// Вісник Львів. ун-ту, Сер. мех.-мат. - 2004. - Т.63. - С. 44-47.
6. Volokh O.A., Sheremeta M.M. On formal power series whose Gelfond-Leont'ev derivatives satisfy a special condition// Mat. Stud. - 2004. - V.22, №1. - P. 87-93. (in Ukrainian)
7. Sheremeta M.M., Volokh O.A. On a convergence of formal power series under a special condition on the Gelfond-Leont'ev derivatives// Journal of Mathematical Physics, Analysis, Geometry. - 2007. - V.3, №2. - P. 241-252.

Department of Mechanics and Mathematics, Ivan Franko National University of Lviv

