УДК 517.53

S. I. FEDYNYAK, M. M. SHEREMETA

CONVERGENCE OF A FORMAL POWER SERIES AND GELFOND-LEONT'EV DERIVATIVES

S. I. Fedynyak, M. M. Sheremeta. Convergence of a formal power series and Gelfond-Leont'ev derivatives, Mat. Stud. **35** (2011), 149–154.

Given a formal power series, we establish conditions on the Gelfond-Leont'ev derivatives under which the series represents a function analytic in the disk $\{z : |z| < R\}, R \in (0, +\infty]$. We also give a survey of well-know results for the case $R = +\infty$.

С. И. Федыняк, М. Н. Шеремета. Сходимость формального степенного ряда и производные Гельфонда-Леонтьева // Мат. Студії. – 2011. – Т.35, №2. – С.149–154.

Получены условия на производные Гельфонда-Леонтьева формального степенного ряда, обеспечивающие аналитичность в круге $\{z: |z| < R\}, R \in (0, +\infty]$ его суммы. Приведен обзор ранее известных результатов для случая $R = +\infty$.

1. For $R \in [0, +\infty]$ we denote by A(R) the class of power series

$$f(z) = \sum_{k=0}^{\infty} f_k z^k,\tag{1}$$

having a radius of convergence $\geq R$, and we say that $f \in A^+(R)$ if $f \in A(R)$ and $f_k > 0$ for all $k \geq 0$. For $f \in A(0)$ and $l(z) = \sum_{k=0}^{\infty} l_k z^k \in A^+(0)$ the formal power series

$$D_{l}^{n}f(z) = \sum_{k=0}^{+\infty} \frac{l_{k}}{l_{k+n}} f_{k+n} z^{k}$$
(2)

is called [1–2] the Gelfond-Leont'ev derivative of order n. If $l(z) = e^z$, that is $l_k = 1/k!$, then $D_l^n f(z) = f^{(n)}(z)$ is a usual derivative of order n. We may assume that $l_0 = 1$.

As in [2], let Λ be the class of all positive sequences $\lambda = (\lambda_k)$ with $\lambda_1 \geq 1$, and let $\Lambda^* = \{\lambda \in \Lambda : \ln \lambda_k \leq ak \text{ for every } k \in \mathbb{N} \text{ and some } a \in [0, +\infty)\}$. We say that $f \in A_{\lambda}(0)$ if $f \in A(0)$ and $|f_k| \leq \lambda_k |f_1|$ for all $k \geq 1$. Finally, let N be a class of increasing sequences (n_p) of nonnegative integers, $n_0 = 0$.

In the next two subsections we give some known results which preceded the main results.

2. Investigation of conditions on Gelfond-Leont'ev derivatives, under which series (1) represents an entire function, started in [2]. In particular, the following theorem is proved.

Theorem 1 ([2]). Let $l \in A^+(0)$. Then for every $f \in A(0)$ and $\lambda \in \Lambda$ the condition $(\forall n \in \mathbb{Z}_+) \{D_l^n f \in A_\lambda(0)\}$ implies the inclusion $f \in A(+\infty)$ if and only if $l \in A^+(+\infty)$, i. e.

$$\lim_{k \to +\infty} \sqrt[k]{l_k} = 0. \tag{3}$$

²⁰¹⁰ Mathematics Subject Classification: 30D50, 30D99.

Denote by N the class of a sequence (n_p) such that $n_p \in \mathbb{N}, n_p < n_{p+1} \ (p \ge 1)$.

Assuming that $l \in A^+(+\infty)$ the second author investigated ([2]) conditions on $(n_p) \in N$ that provide the implication

$$(\forall p \in \mathbb{Z}_+) \{ D_l^p f \in A_\lambda(0) \} \Rightarrow f \in A(+\infty).$$
(4)

Theorem 2 ([2]). Let $(n_p) \in N$. Then for every $\lambda \in \Lambda$, $f \in A(0)$ and $l \in A^+(+\infty)$ condition (4) holds if and only if

$$\overline{\lim}_{p \to +\infty} (n_{p+1} - n_p) < \infty.$$
(5)

We put $\varkappa_k = l_k l_{k+1}/l_k^2$ and we say that $l \in A^+_*(R)$ if $l \in A^+(R)$ and the sequence (\varkappa_k) is nondecreasing. In the following theorem the sequence $(n_{p+1} - n_p)$ can be unbounded, but we require that $\lambda \in \Lambda^*$ and $l \in A^+_*(+\infty)$.

Theorem 3 ([2]). Let $(n_p) \in N$ and $l \in A^+_*(+\infty)$. Then for every $\lambda \in \Lambda^*$ and $f \in A(0)$ condition (4) holds if and only if

$$\lim_{p \to +\infty} \frac{1}{n_p + 1} \left\{ \ln \frac{1}{l_{n_p + 1}} - \sum_{j=1}^p \ln \frac{1}{l_{n_j - n_{j-1} + 1}} \right\} = +\infty.$$
(6)

The condition $l \in A_*^+(+\infty)$ (i. e. the nondecrease of the sequence (\varkappa_k)) in Theorem 3 cannot be removed in general. Actually, in [2] it is shown, that there exist sequences (n_p) , $\lambda \in \Lambda^*$ and functions $l \in A^+(+\infty)$ and $f \notin A(+\infty)$ such that the sequence (\varkappa_k) is oscillating, condition (6) does not hold and $(\forall p \in \mathbb{Z}_+) \{D_l^{n_p} f \in A_\lambda(0)\}.$

The following problem is examined in [2]: for what functions $l \in A_*^+(+\infty)$ one has that, if $(\forall p \in \mathbb{Z}_+) \{D_l^{n_p} f \in A_\lambda(0)\}$ holds for every (n_p) and $\lambda \in \Lambda^*$ then $f \in A(+\infty)$? If we denote $\omega_k = \frac{1}{k+1} \ln \frac{1}{l_{k+1}} - \frac{1}{k} \ln \frac{1}{l_k}$ then [2] the nondecrease of the sequence (\varkappa_k) implies the positivity and the nonincrease of the sequence (ω_k) , that is, $\lim_{k \to \infty} \omega_k = \omega$ exists.

Theorem 4 ([2]). Let $l \in A_*^+(+\infty)$. Then for every $(n_p) \in N$, $\lambda \in \Lambda^*$ and $f \in A(0)$ condition (4) holds if and only if $\omega > 0$.

The following theorem asserts that, under some conditions on $l \in A^+(+\infty)$, one value $n \in \mathbb{N}$ suffices in order that the condition $D_l^{n_p} f \in A_\lambda(0)$ implies the inclusion $f \in A(+\infty)$.

Theorem 5 ([2]). Let $l \in A^+(+\infty)$. Then for every $n \in \mathbb{N}$, $\lambda \in \Lambda^*$ and $f \in A(0)$ the condition $D_l^n f \in A_{\lambda}(0)$ implies the inclusion $f \in A(+\infty)$, if and only if

$$\lim_{k \to \infty} \sqrt[k]{l_k/l_{k+1}} = +\infty.$$
(7)

We note that condition (7) holds provided $\omega_k \to +\infty$ $(k \to \infty)$. For the sequence $l_k = \exp\{-\omega k^2\}$ with $\omega > 0$ we have $\omega_k \searrow \omega(k \to \infty)$, and condition (7) holds if $l_k = \exp\{-\beta(k)k^2\}$, where $0 < \beta(x) \nearrow +\infty(k \to \infty)$.

It is shown in [3] that if $l \in A^+(+\infty)$ and the sequence (\varkappa_k) is nonincreasing then $1 > \varkappa_k \searrow \varkappa \ge 0$ $(k_0 \le k \to +\infty)$ and $\omega_k \nearrow \omega = \frac{-\ln \varkappa}{2} \le +\infty$ $(k \to +\infty)$. Therefore, if $1 > \varkappa_k \searrow \varkappa \ge 0$ $(k_0 \le k \to +\infty)$ then by Theorem 5, for every $n \in \mathbb{N}$, $\lambda \in \Lambda^*$ and $f \in A(0)$ the condition $D_l^n f \in A_\lambda(0)$ implies the inclusion $f \in A(+\infty)$. However, the following result is more general.

Theorem 6 ([3]). Let $l \in A^+(+\infty)$ and $1 > \varkappa_k \searrow \varkappa \ge 0$ $(k_0 \le k \to +\infty)$. Then for every $(n_p) \in N, \lambda \in \Lambda^*$ and $f \in A(0)$ condition (4) holds.

In Theorems 3–6 $\lambda \in \Lambda^*$, i. e. the sequence λ can increase not faster than the exponential function. In [4] an analogue of Theorem 3 is obtained for the case if λ is allowed to increase considerable fast. We assume that a positive sequence $\psi = (\psi_k)$ satisfies the condition $\psi_k^2 \leq \psi_{k-1}\psi_{k+1}, k \geq 2$, and let $\Lambda_{\psi} = \{\lambda \colon \ln \lambda_k \leq \ln \psi_k + ak(k \in \mathbb{N})\}, a \equiv \text{const.}$

Theorem 7 ([4]). Let $(n_p) \in N$, $l \in A^+_*(+\infty)$ and $\psi^2_k \leq \psi_{k-1}\psi_{k+1}$, $k \geq 2$. Then for every $\lambda \in \Lambda_{\psi}$ and $f \in A(0)$ condition (4) holds if and only if

$$\lim_{p \to +\infty} \frac{1}{n_p + 1} \left\{ \ln \frac{1}{l_{n_p + 1}} - \sum_{j=1}^p \ln \frac{\psi_{n_j - n_{j-1} + 1}}{l_{n_j - n_{j-1} + 1}} \right\} = +\infty.$$
(8)

We remark that the condition $\psi_k^2 \leq \psi_{k-1}\psi_{k+1}, k \geq 2$ holds if, for example, $\psi_k = k!$ or $\psi_k = \exp\{\alpha k^n\}$ ($\alpha > 0, n \in \mathbb{N}$), and Theorem 7 has the following consequence.

Corollary 1 ([4]). Let $l_k = \exp\{-\omega_1 k^2\}$ and $\psi_k = \exp\{-\omega_2 k^2\}$, $0 < \omega_1, \omega_2 < \infty$. Then for every $(n_p) \in N$, $\lambda \in \Lambda_{\psi}$ and $f \in A(0)$ condition (4) holds.

3. In all mentioned results conditions on the Gelfond-Leont'ev derivatives of formal power series (1) implies that the convergence radius $R[f] = +\infty$. The following question naturally arises: find conditions on the Gelfond-Leont'ev derivatives, under which series (1) is convergent in some neighborhoods of the origin, i.e. R[f] > 0. Such results are obtained in the papers [5–7]. In particular, in [5] it is proved the following proposition, which is new also for the case $R[f] = +\infty$.

Proposition 1 ([5]). Let $R \in (0, +\infty]$. Then $f \in A(R)$ if and only if there exists a sequence $\lambda \in \Lambda$ such that $f \in A_{\lambda}(0)$ and $\lim_{k \to \infty} \sqrt[k]{\lambda_k} \leq 1/R$.

The following result generalizes Theorem 1.

Theorem 8 ([5]). Let $l \in A^+(0)$. Then for every $f \in A(0)$ and $\lambda \in \Lambda$ the condition $(\forall n \in \mathbb{Z}_+) \{D_l^n f \in A_\lambda(0)\}$ implies the inclusion $f \in A(R)$ if and only if

$$\overline{\lim}_{k \to +\infty} \sqrt[k]{l_k} \le \frac{l_2}{l_1 \lambda_2 R}.$$
(9)

Obviously, for $R = +\infty$ conditions (3) and (9) are equivalent. We remark also that Theorem 8 implies that if $l \in A^+(0)$ then in order that for every $f \in A(0)$ and $\lambda \in \Lambda$ the condition $(\forall n \in \mathbb{Z}_+) \{D_l^n f \in A_\lambda(0)\}$ imply the analyticity of f in some neighborhood of the origin, it is necessary and sufficient that $\sqrt[k]{l_k} = O(1), k \to \infty$.

The following two results are analogues of Theorem 2.

Theorem 9 ([6]). Let $(n_p) \in N$. In order that for every $\lambda \in \Lambda$, $f \in A(0)$ and $l \in A^+(R)$ $(0 < R \le +\infty)$ the condition $(\forall p \in \mathbb{Z}_+) \{D_l^{n_p} f \in A_\lambda(0)\}$ imply the analyticity of f in some neighborhood of the origin is necessary and sufficient that condition (5) hold.

Theorem 10 ([6]). Let $(n_p) \in N$. For condition (5) to hold is necessary and sufficient that for every $\lambda \in \Lambda$, $f \in A(0)$ and $l \in A^+(R)$ $(0 < R \le +\infty)$ the condition $(\forall p \in \mathbb{Z}_+) \{D_l^{n_p} f \in A_{\lambda}(0)\}$ imply the estimate $R[f] \ge PR[l]$, where R[f] and R[l] are the convergence radii of the functions f and l, and P is a positive constant. We note that $P = \frac{1}{l_1 \max\{\lambda_k/l_k: 2 \le k \le m+1\}}$, where $m = \max\{n_{p+1} - n_p: p \ge 0\}$, and the estimate $R[f] \ge PR[l]$ in Theorem 10 is sharp. Also if $\overline{\lim}_{p \to +\infty} (n_{p+1} - n_p) = \infty$ then for every $R \in (0, +\infty]$ there exist $\lambda \in \Lambda$, $f \in A(0)$ and $l \in A^+(0)$ such that $(\forall p \in \mathbb{Z}_+) \{D_l^{n_p} f \in A_\lambda(0)\}$, but R[f] = 0 and R[l] = R.

We denote $\Lambda_* = \{\lambda \in \Lambda : \lambda_{k-1}\lambda_{k+1} \ge \lambda_k^2 (k \ge 2)\}$. Then Theorem 3 has the following analogue.

Theorem 11 ([7]). Let $(n_p) \in N$. Then for every $\lambda \in \Lambda_*$, $l \in A^+_*(0)$ and $f \in A(0)$ the condition $(\forall p \in \mathbb{Z}_+) \{D_l^{n_p} f \in A_\lambda(0)\}$ implies the inclusion $f \in A(R)$ if and only if

$$\lim_{p \to +\infty} \frac{1}{n_p + 1} \left\{ \ln \frac{1}{l_{n_p + 1}} - p \ln l_1 - \sum_{j=1}^p \ln \frac{\lambda_{n_j - n_{j-1} + 1}}{l_{n_j - n_{j-1} + 1}} \right\} \ge \ln R.$$
(10)

Each of the conditions $\lambda \in \Lambda_*$, $l \in A^+_*(0)$ in Theorem 11 cannot be relaxed. Theorem 11 is a consequence of the following result.

Theorem 12 ([7]). Let $(n_p) \in N$, and let a sequence $\lambda \in \Lambda$ and a function $l \in A^+(0)$ be such that for all $p \in \mathbb{Z}_+$ and $k = 2, \ldots, n_{p+1} - n_p$

$$\ln \frac{l_{n_p+k-1}l_{n_p+k+1}}{l_{n_p+k}^2} - \ln \frac{l_{k-1}l_{k+1}}{l_k^2} + \ln \frac{\lambda_{k-1}\lambda_{k+1}}{\lambda_k^2} \ge 0.$$

If $(\forall p \in \mathbb{Z}_+) \{ D_l^{n_p} f \in A_\lambda(0) \}$ then the estimate

$$\ln R[f] \ge \lim_{p \to +\infty} \frac{1}{n_p + 1} \left\{ \ln \frac{1}{l_{n_p + 1}} - p \ln l_1 - \sum_{j=1}^p \ln \frac{\lambda_{n_j - n_{j-1} + 1}}{l_{n_j - n_{j-1} + 1}} \right\}$$

is true and sharp.

We remark that one can obtain an analogue of Theorem 12 for the case when the sequence $\lambda \in \Lambda$ satisfies a condition similar to $\lambda \in \Lambda^*$.

Theorem 13 ([7]). Let $(n_p) \in N$, $l \in A^+_*(0)$ and let a sequence $\lambda \in \Lambda$ be such that $\ln \lambda_k \leq a(k-1)$ for all $k \geq 1$ and some a > 0. If $(\forall p \in \mathbb{Z}_+) \{D_l^{n_p} f \in A_\lambda(0)\}$ then the estimate

$$\ln R[f] \ge \lim_{p \to +\infty} \frac{1}{n_p + 1} \left\{ \ln \frac{1}{l_{n_p + 1}} - p \ln l_1 - \sum_{j=1}^p \ln \frac{1}{l_{n_j - n_{j-1} + 1}} \right\} - a \tag{11}$$

is true and sharp.

In Theorem 13 one cannot replace the condition $\ln \lambda_k \leq a(k-1)$ with the condition $\lambda \in \Lambda^*$ and, moreover, with the condition $\overline{\lim_{k\to\infty}}(\ln \lambda_k)/k = a$. However, the following theorem is true.

Theorem 14 ([7]). Let $(n_p) \in N$, $\ln \lambda_k = o(k)(k \to \infty)$ and let a function $l \in A^+(0)$ be such that the sequence $(\mu_{k-1}\mu_{k+1}/\mu_k^2)$ is nondecreasing, where $\mu_k = l_k/\lambda_k$. If $(\forall p \in \mathbb{Z}_+)$ $\{D_l^{n_p} f \in A_\lambda(0)\}$ then the estimate (11) with a = 0 is true and sharp.

4. Continuing investigations from [5–7], we show, at first, that the full analogue of Theorem 5 is valid.

Theorem 15. Let $l \in A^+(0)$. Then for every $n \in \mathbb{N}$, $\lambda \in \Lambda^*$ and $f \in A(0)$ the condition $D_l^n f \in A_\lambda(0)$ implies the inequality R[f] > 0 if and only if

$$\lim_{k \to \infty} \sqrt[k]{l_k/l_{k+1}} > 0.$$
(12)

Proof. We first assume that (l_k) satisfies condition (12) and $D_f^n \in A_{\lambda}(0)$ for some fixed number $n \in \mathbb{N}$. Then $\frac{l_k|f_{n+k}|}{l_{n+k}} \leq \lambda_k \frac{l_1|f_{n+1}|}{l_{n+1}}$ $(k \geq 1)$, that is,

$$\frac{1}{n+k}\ln\frac{1}{|f_{n+k}|} \ge \frac{1}{n+k}\ln\frac{l_k}{l_{n+k}} - \frac{\ln\lambda_k}{n+k} - \frac{1}{n+k}\ln\left(\frac{l_1|f_{n+1}|}{f_{n+1}}\right)$$

and, thus,

$$\ln R[f] = \lim_{k \to \infty} \frac{1}{n+k} \ln \frac{1}{|f_{n+k}|} \ge \lim_{k \to \infty} \frac{1}{n+k} \ln \frac{l_k}{l_{n+k}} - a.$$
(13)

But by condition (12), there exists c > 0 such that $\sqrt[k]{l_k/l_{k+1}} \ge c$ for all $k \ge 1$. Therefore, we obtain from (13)

$$\ln R[f] \ge \lim_{k \to \infty} \frac{1}{n+k} \sum_{j=k}^{n+k-1} \ln \frac{l_j}{l_{j+1}} - a \ge \lim_{k \to \infty} \frac{1}{n+k} \sum_{j=k}^{n+k-1} j \ln c - a =$$
$$= \lim_{k \to \infty} \frac{\ln c}{n+k} \frac{2nk+n(n-1)}{2} - a = n \ln c - a > -\infty,$$

that is, R[f] > 0 and the sufficiency of (12) is proved.

Now we assume that condition (12) does not hold, i.e. there exists an increasing sequence (k_j) such that $\sqrt[k_j/l_{k_j+1} = \alpha_j \to 0 \ (j \to \infty)$. We put $k_0 = 0$, $f_{k_j+1} = \frac{l_{k_j+1}}{f_{k_j}} \ (j \ge 0)$ and $f_k = 0$ for $k \neq k_j + 1$. For series (1) with such coefficients we have $\sqrt[k_j/l_{k_j+1} = \sqrt[k_j/l_{k_j+1}/l_{k_j} = (1/\alpha_j)^{k_j/(k_j+1)} \to +\infty \ (j \to \infty)$, that is, R[f] = 0.

On the other hand, for the series we have

$$D_f^1(z) = \sum_{j=0}^{\infty} \frac{l_{k_j}}{l_{k_j+1}} l_{k_j+1} z^{k_j+1} = z + \sum_{j=1}^{\infty} z^{k_j+1},$$

that is, $D_f^1 \in A_{\lambda}(0)$, if we choose $\lambda_k \equiv 1$. Thus, if condition (12) does not hold then there exist $n = 1, \lambda \in \Lambda^*$ and a formal power series (1) such that $D_f^n \in A_{\lambda}(0)$, but R[f] = 0. Theorem 15 is proved.

If we denote $c = \lim_{k \to \infty} \sqrt[k]{l_k/l_{k+1}}$ then one can show using arguments analogous to that in the proof of Theorem 15 that the estimate $\ln R[f] \ge n \ln c - a$ is valid. On the other hand, if we choose $l_k = c^{k(k+1)}(k \ge 0)$, $\lambda_k = e^{a(k-1)}(k \ge 1)$, $f_0 = \cdots = f_n = 0$, $f_{n+1} = 1$ and $f_{n+k} = f_{n+1}\lambda_k l_{n+k}/l_k (k \ge 1)$ then for series (1) with such coefficients we have $D_l^n f(z) =$ $\sum_{k=0}^{\infty} \lambda_k z^k$ (i.e. $D_l^n f \in A_{\lambda}(0)$) and $\ln R[f] = \lim_{k \to \infty} \frac{1}{n+k} \left(\ln \frac{l_k}{l_{n+k}} - a(k-1) \right) = n \ln c - a$. Thus, the following proposition is true.

Proposition 2. Let $n \in \mathbb{N}$, $\lambda \in \Lambda^*$, $l \in A^+(0)$ and $\lim_{k \to \infty} \sqrt[k]{l_k/l_{k+1}} = c$. If $D_l^n f \in A_\lambda(0)$ then the estimate $R[f] \ge c^n e^{-a}$ is valid and sharp.

As above, we denote $\varkappa_k = \frac{l_{k-1}l_{k+1}}{l_k^2}$ and $\omega_k = \frac{1}{k+1} \ln \frac{1}{l_{k+1}} - \frac{1}{k} \ln \frac{1}{l_k}$. It is easy to show [2–3] that $\omega_k = \frac{1}{k(k+1)} \sum_{j=1}^k j \ln \frac{1}{\varkappa_j}$. Hence, if $\lim_{k\to\infty} \varkappa_k = \varkappa$ then $\lim_{k\to\infty} \omega_k = \omega = \frac{1}{2} \ln \frac{1}{\varkappa}$. On the other hand,

$$\ln c = \lim_{k \to \infty} \left(\frac{1}{k} \ln \frac{1}{l_{k+1}} - \frac{1}{k} \ln \frac{1}{l_k} \right) = \lim_{k \to \infty} \left(\omega_k + \frac{1}{k(k+1)} \ln \frac{1}{l_{k+1}} \right) =$$
$$= \lim_{k \to \infty} \left(\omega_k + \frac{1}{k} \sum_{j=1}^k \omega_j \right) = 2\omega = \ln \frac{1}{\varkappa}.$$

Therefore, Proposition 2 and arguments of its proof yield the following result.

Theorem 16. Let $n \in \mathbb{N}$, $\lambda \in \Lambda^*$, $l \in A^+(0)$ and $\lim_{k\to\infty} \varkappa_k = \varkappa$. If $D_l^n f \in A_\lambda(0)$ then the estimate $R[f] \ge e^{2n\omega}e^{-a} = \varkappa^{-n}e^{-a}$ is valid and sharp.

Theorem 16 has the following corollary.

Corollary 2. Let $(n_p) \in N$, $\lambda \in \Lambda^*$, $l \in A^+(0)$ and $\lim_{k\to\infty} \varkappa_k = \varkappa < 1$ (i. e. $\omega > 0$). If $D_l^{n_p} f \in A_{\lambda}(0)$ for all $p \in \mathbb{Z}_+$ then $R[f] = +\infty$.

Since $\varkappa < 1$ implies $l \in A^+(+\infty)$, from Corollary 2 and, thus, from Theorem 16 we obtain Theorem 6 and the sufficiency of the condition $\omega > 0$ in Theorem 4.

REFERENCES

- Гельфонд А.О., Леонтьев А.Ф. Об одном обобщении ряда Фурье// Матем. сб. 1957. Т.29, №3. С. 477–500.
- Шеремета М.Н. О степенных рядах с удовлетворяющими специальному условию производными Гельфонда-Леонтьева// Мат. физика, анализ, геометрия. – 1996. – Т.3, №3/4. – С. 423–445.
- Sheremeta M.M. On analytic continuation of power series with the condition on their Gelfond-Leont'ev derivatives// Proc. Conf. held in Paseky nad Jezerou. - 1996. - P. 201-205.
- Sheremeta M.M. On analytic continuation of functions with the condition on their Gelfond-Leont'ev derivatives// Bull. Soc. Sci. of Lettr. Lodz. - 1997. - V.47. - Ser.: Recher. sur le devorm. - V.24. -P. 83-90.
- 5. Волох О.А., Фединяк С.І. Про формальні степеневі ряди, похідні Гельфонда-Леонтьева яких задовольняють спеціальну умову// Вісник Львів. ун-ту, Сер. мех.-мат. 2004. Т.63. С. 44–47.
- Volokh O.A., Sheremeta M.M. On formal power series whose Gelfond-Leont'ev derivatives satisfy a special condition// Mat. Stud. – 2004. – V.22, №1. – P. 87–93. (in Ukrainian)
- Sheremeta M.M., Volokh O.A. On a convergence of formal power series under a special condition on the Gelfond-Leont'ev derivatives// Journal of Mathematical Physics, Analysis, Geometry. – 2007. – V.3, №2. – P. 241–252.

Department of Mechanics and Mathematics, Ivan Franko National University of Lviv